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Within the context of a manifestly covariant massive Abelian gauge field 
model,  it is demonstra ted that a mass  is genuinely compatible with the existence 
of a bona.fide Goldstone boson. Some arguments  have been placed to claim that  
this Goldstone boson may  occupy a physical sector of the Hilbert space and  as 
a consequence, at the zero m o m e n t u m  limit, is shown to connect the spectral 
measure  to the bare coupling constant  through the Higgs meson mass.  It is 
conjectured that this Goldstone boson can be recognized to invoke a class of  
Brans -Dicke  scalars of the sca la r - tensor  theory of gravitation. 

1. INTRODUCTION  

We shall consider a model, a variant of the Stiickelberg formalism for 
massive Abelian gauge fields interacting with a conserved current (Ghose 
and Das, 1972). In this model, the redundant spin-zero component for the 
vector field V~(x) has been made to mix with a free, negative metric, 
spinless Lagrange multiplier field B(x), and is decoupled from the theory 
by virtue of the equation of motion. The unitarity of the S matrix is 
defined through B (+) [phys) = 0. It is observed that the squared mass m20 of 
the vector meson acquires a mass M 2 from the spontaneous breaking of a 
one-parameter global symmetry and also a genuine Goldstone boson is 
present in the theory. This Goldstone boson is shown to satisfy a free field 
equation and at the same time it has been stressed that it can be used to set 
up relations between the n- and (n + 0-point  vacuum amplitudes where the 
extra particle is always in the limit of zero momentum. Thus a connection 
between the spectral measure and the coupling constant is obtained. We 
propose this Goldstone boson as a member of a class of Brans-Dicke 
scalars of the scalar- tensor  theory of gravitation. The present model is a 
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manifestly covariant one and the spin-zero component of the vector field 
always possesses a mixing with the negative metric field B(x) and is 
decoupled by virtue of the equation of motion. This guarantees that scale 
transformation and Lorentz covariance are always maintaining compatibil- 
ity in this model (Das and Chose, 1973). 

2. SPONTANEOUS SYMMETRY BREAKING 

Let us define an automorphism a of the field algebra F, commuting 
with the proper Poincar6 group, by the set of local transformations 
( i= 1 . . . . .  N) 

Ai--->A'~ (2.1) 

and suppose that this transformation corresponds to an n-parametric group 
G of fields transforming in this way: 

Ai( x )--->A~(X)( x ) (2.2) 

where g(X)ffig(Xl .. . . .  X~)EG. If the generator of (2.2) is some local 
conserved currentjv, then its relation with Ai(x ) may be represented in this 
way: 

dd~aA'(X)(x')=i[ fd3x  fn(x)j~ t), Ai(x' ) ] (2.3) 

where fR(x) is test function which is 1 for Ixl<R+e and vanishes for 
Ix[ > R + ~. If the theory involves spontaneous symmetry breaking, 

lim (allOTs,,, Alia) (2.4) 

where Q~(t)=fd3xfR(x)j~ t), h is any field algebra F, and f~ is the true 
vacuum. The essential content of the Goldstone theorem (Goldstone et al., 
1962) is that the condition given by (2.4) occurs (Reeh, 1968) when there is 
a singularity in the spectral representation of (~21[j~ All f~), i.e., from 
zero-mass one-particle intermediate states (Ezawa and Swieca, 1967). 

If we now write E l for the projector on the zero-mass one-particle 
states and 

F~( x )=--( fl~j~( x)E,A - AEljC( x )la ) (2.5) 
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then for (2.3) we can write 

\ 1--~- e =._~lim (.[[Q~.,.A]la) 

= lira (~IQ~,tE1A-AE,Q~,,I~) 

= lim fd3xfR(x)F~ 
R---~ o o  , J  

(2.6) 

We note that actually, 

F:(x) = fa3x'(A(x-x' ,  (2.7) 

which is the J o s t - K a l l r n - L e h m a n - D y s 0 n  representation for (2.5). The 
physical meaning of (2.6) may be summerized (Picasso and Ferrari, 1970) 
by the formula 

< ~ ~ l ~  > --(2~r)3/ZF~ (2.8) 

which can be used to set up connections between the n- and (n+  1)-point 
vacuum amplitudes, i.e., between vertices and scattering amphtudes, spec- 
tral functions and vertices, and so on, of course, the extra particle being 
always in the limit of zero momentum. 

3. THE MODEL 

We are going to explore a manifestly covariant, renormalizable, mas- 
sive Abelian gauge model using a variant of the St/ickelberg formalism. In 
this formahsm the redundant spin-zero component of the vector field 
V~(x) has been made to mix with a free, negative metric, spinless field and 
is decoupled from other sources by virtue of the equation of motion. The 
spin-zero field B(x) is actually a Lagrange multiplier field operator. The 
unitarity of the S matrix is guaranteed, because it is defined in the physical 
sector alone through B+}phys> =0.  

3.1 Quantization. Let us consider a Lagrangian describing the inter- 
action of a massive vector field U~(x), with a bare mass m o, with a 
conserved current of a spin-zero charged matter field q,'(x) having a 
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double-hump self-interaction: 

+(8~,+igoU~)q)'*(O~'-igoU~')q~'+l~2lqylz-xle/14 (3.1) 

Let us now perform the Stfickelberg decomposition 

= V~(x)+ ~oO~,B(x) (3.2a) V.(x) 

and the gauge transformation 

•'( x ) =exp(  i (go /mo)B(  x ) }ep( x ) (3.2b) 

and get the equation of motion for the unrenormalized field V~(x): 

~"V,j, + rn2V~ ---- % -  moOt, B (3.3) 

and 

~V~'=0 (3.4) 

The Noether current j ,  is given by 

�9 8 ~ '  . 8 2 '  . 
j~ = - -  ( - te ep ) . d-~, ~ ( te eP ) 

-~igo[ **(0 N + igoV~) q~ - ,  (~,-/goV~) dO* ] (3.5) 

also, 

~t,j~' = 0 (3.6) 

From equations (3.3), (3.4), and (3.6) we recover the equation 

[-qB=0 (3.7) 

We assert that the scalar field B(x )  always satisfies the homogenous 
equation (3.7), so that 

B(x) = - f a3x, D ( x -  (3.8) 
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A few nontrivial equal-time commutations are 

[ x ). V.( x') ] og.o)8 (x- x ') 

[ ~ ( x ) ,  B(x') ] ET = ( -- i/mo)g~,o83(X--x') 

B x '  i 3 , [ ~ ( x ) ,  ( ) ] e r = ( / m o ) g ,  o8 (x - -x )  

Consequently, 
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(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

~(in)_ - i( g~'--P~ 'P'//p2 ) 

r ~ - p2 m~ + ic (3.15a) 

~ ( i n )  = - - i  (3.15b) 
p2 + i~ 

~ ( i ~ ) =  /P~ (3.15c) 
m~(p2+i,) 

The relation (3.15a) shows that our Lagrangian (3.1) supported by (3.2) 
defines the same on-the-mass-shell S matrix as a similar Lagrangian 
without the B field. Moreover, the unitarity is preserved because of (3.7). 
In fact, we define states by 

B(+)lphys ) =0  (3.16) 

along with (d/dt)B(+)lPhys)=0 at t=0. Then (3.7) guarantees that if 
there are no B particles initially, there will be none finally. They do not 
take part in scattering. The S matrix defined in the physical sector of the 
Hilbert space is perforce unitary. 

independent of any model of the charged matter field. The momentum 
space propagators are 

[ ~(x), y.(x')] =0 (3.14) 
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3.2 Spontaneous Symmetry Breaking. Let us now form real fields ~l 
and X using ~ and q~* present in (3.1). Thus 

1 - i  , 

~,= 2 - ~ ( , + r  x = 2 - r ~ ( , - ,  ) 

so that 

(3.17) 

but 

<~Zlxl~> =o (3.18) 

Let ffl =ep,-v.  Then the total Lagrangian in terms of q~ and X is 

L(total ) - -  L(free) + L(iateraction) 

where 

and 

L<,,~>-' - -~,e:,'+ ~"o~',"~"'"-~O, BO"B+ ~(g:yvy, 

+ �89 ~xO~x + l o ~ a ~  + (gov)Vp~x 

1 2 2  2 1 2 2  2 2 - i ( 3 X  v - # o ) f f - i ( h v  - /%)X 

(3.19) 

(3.20a) 

Z(interactioa) =go(gov)U~U~+goU~(~O"~) + Ig~U~U~'(~2 + X 2) 

- ( X / 4)( ~ 2 + XZ ) - X2go~( q.,2 + X2 ) + ( l~20v- X2v3 ) 

(3.20b) 

1 
U~-- V~ + (m2 + M2)l/2 OrB 

The condition (~2[q~lf~) imposes/fl--~2v2 at the zeroth order and we can 
put M=gv. Inserting M in L~to~ ) we now find that U~, has a mass 
(m2+M2) 1/2 [see Equation (3.21a)]. Let us perform the Stiickelberg de- 
composition 
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Then for L~'~,~) and L~interaction ) w e  can write, respectively, 

and 

t j7 ~ p a _  t ( m 2 + M 2 $ V v t t  

2 2 1/2 +(mo+M ) V~O~'B+�89 

+ 
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(3.21a) 

and 

Also, in the zeroth order, 

and 

~V~'=O (3.22b) 

2 2 2 
m i = m o + M  

4=2goMV~+go( ~.x)+g~W(~ 2 + X z) 

Ot, J~=O (3.24) 

[-Ix=O (3.25) 

with 

and 

(3.22a) 

(3.23) 

The equation of motion in the lowest order theory are 

1 2 /~ 2 +sgoV~V (r + X2)-(X2/4)( ~2 + X2)2-X2goqJ( ~2 + XZ) 

(3.21b) 
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and 

(l'-I +/xz)qJ= 0 (3.26) 

where/~2=2/~2. For (3.22a) we can write 

~,V,t,+m2V.--.-goJj-ml~l,[ B+-~]X]=-goJ~,-ml~,B1 (3.27) 

where B I =B+(M/ml)x  and in view of (3.7) and (3.25) we introduce 

t3B, =0 (3.28) 

In the algebric condition B 1 = B +(M/mI)X, B occupies some unphysical 
sector of the Hilbert space, while X is implemented in the physical sector of 
the Hilbert space [see the discussion following equation (4.1)]. Thus it is 
not desirable to introduce a transformation B-.~B-(M/mt)x so that X is 
shown to be transformed away from the theory. The following relations are 
now interesting: 

[ Bl(x),qj(x')] = -( i /ml)goX(X)D(x-x" ) (3.29) 

and 

[ BI(X), X(X') ] = -- ( i M / m l )  D ( x - x ' )  (3.30) 

We also note that 

[J,,(x), B,(x')]--- -~l g 0 { - q ~ D ( x - x ' ) + O , g ' D ( x - x ' ) }  (3.31) 

We intend to calculate 

( a  [ J~(x), X(0)] a )  (3.32) 

The most general form of the Fourier transform of (3.32) can be expressed 
in this form: 

(a l [  ,/~(x), x(O) ] la  ) =k"~(kZ)X(nk)[ k 2 ( n ) - k ( n k  ) ]p(k  2 , nk) 

-t- n/t~(17k)m(k 2) -t- cnlL~4(k) (3.33) 

Here c is constant and X, O, and A are arbitrary functions of their indicated 
arguments. However, explicit model dependence due to physical require- 
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ments assures that the fourth term should not remain and bonafide 
Goldstone bosons come from the first two terms only. In this connection it 
is important to note that we should disregard the contribution from the 
third term. It corresponds to the intermediate states with dispersion of the 
form k ~  for all k. Its existence will guarantee that it is possible to 
generate from any given vacuum, other vacua, which have zero energy but 
nonzero momenta. This may imply spontaneous breakdown of transla- 
tional invariance. Now in view of (3.25) we can write (Hagedorn, 1964) 

where 

with 

so that 

O<+)(x) = <~Zl X(x)X(0)l ~Z) 

=--alln{--(Xo--i,)2+x 2) 

+a2{x2-ir - l + a  3 (3.34) 

In{ - (Xo-  i,)2 + x = } =In  I - (Xo-  ic)2 + xZ I 

+iarg(-(xo-ic)=+x 2) (3.35) 

- r < arg( - ( x 0 -  ic)2+x 2 ) <or 

[ X(X), X(0)] =2~ric(Xo)(a~0(x:)+a26(x2)} (3.36) 

where a~ and a 2 are two model-dependent contants. Some usable relations 
in this connection are 

[]  In { - (x 0 - i%)2 + x } = 4(x 2 -- iex o) -1 (3.37) 

�9  z) = 4,(Xo)d(x 2) (3.38) 

and 

a~,O~Op~(xo)O(x2)[ xo=O = 8r (3.39) 

Then in our model very simply it follows that 

( f~l[ J~(x), X(0)]1~) =(numerical constant)0~,c(x0)8(x 2) (3.40) 
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The Fourier transform of the right-hand side of (3.40) is proportional to 

p~,e(po)8(p 2) (3.41) 

Thus corresponding to the existence of X, there exists a momentum space 
delta function singularity in the theory. 

4. THE ROLE OF THE GOLDSTONE BOSON 

An important observation and a comment are in the sequel. The 
Fourier transform of (3.34) contains 

( q'g ln'r~4(p)) .t-(21n2--2V)~4(p) (4.1) 2 lim O(Po)8"(pZ-T)+-~ 
~'-.-~0 + 

wher "t is the Euler constant. 8' is not a measure, it arises as a consequence 
of the non-unitarity of translations. It becomes unitary in the negative 
metric space. Note that the primordial Lagrangian (3.1) was invariant 
under the transformation (3.2b). Ultimately, we have obtained a 8(p 2) 
singularity in the Fourier transform of (3.40). X has been assumed to be a 
localized operator such that (f~l~xlrnla)~0 provided it is invariant 
under translations and the support of the Fourier transform is obtained in 
the forward light cone. But since the unitarity requirement condition 
B(+)lphys ) =0  must always be valid, (4.1) is meaningful (Kibble, 1967) 
only in the limit of z+ =0, i.e., when the Fourier transform of (3.34) is 
proportional to d(p2). In order to elucidate the role of the Goldstone 
boson further we can use the relation (2.8) which has actually set up a 
connection between the Goldstone boson and the Ward identity. In doing 
so the Goldstone boson is constrained to the characteristic that it is present 
but that always in the limit of zero momentum. Let us recall that X and 
are all fields constructed out of ~ and ~*, and that we have familiar 
relations 

[ Q, q,] =goq~(x) (4.2a) 

and 

[ Q, co* ] = -goeo(x) (4.2b) 

In the relation (2.8) let us choose A = T(~(0)~*(x)). Then since ff's are 
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Hermitian fields, using (4.2) we can write 

go((~lTq,(O)q,*(x)l f~) + (~21T C(0)~,*(x)l ~ )  } 

= (2~r)3/2F~ ~)  

(4.3) 

It is a relation between the propagator A F (left-hand side) and the scatter- 
ing vertex (right-hand side) where 

(2~)3/2 f d4xe-O,X(qlTe~(O)4*(x)lf~) =aF(p-q)F(q ' p)A(p) (4.4) 

Therefore, the Fourier transform of (4.3) can be written in the form of 
Ward identity 

go(AF+ At)  = F~ p ) a F ( p )  (4.5) 

For on-the-mass-shell ~'s, p2=/x2 and F has the simple form 

F(0, p )  =go (4.6) 

In view of (4.5) we have 

F%=l~o=l~/2 !/2 (4.7) 

We have arrived at a striking result that the Goldstone boson in the theory 
connects F v as given by (2.7) to the Higgs meson mass and the bare 
coupling constant via (2.8). 

5. CONCLUSION 

The X comes from a zero-mass one-particle intermediate state but is 
obtainable only at the limit of zero momentum. Now in view of equations 
(3.17) and (3.25) a question may be framed is that whether X carries any 
superselection quantum number. Since we are actually interested in (4.7), 
following Haag and Kasfler (1964) we can argue that the vacuum sector, 
containing only states of zero charge, does in fact contain all the informa- 
tion about the states carrying superselection quantum numbers and, 
observable themselves, cannot create particles carrying superselection 
quantum numbers. Let us consider the sequence of states in the vacuum 
sector ~C9 representing a particle in the fixed open set O, together with an 
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antiparticle further and further away. To an observer in O, the end of the 
sequence looks more and more like the one-particle state O. Similarly, 
states of the charge 2, 3 . . . .  should be constructed in 9C a. Following Haag 
and Kastler (1964) we shall argue that, although the different coherent 
subspace Hq may carry mutually inequivalent representations rrq of the 
algebra G, all representations are physically equivalent in the following 
sense. Any real experiment will measure the expectation values f l  . . . . .  f , ,  
say, of a finite number of observables A 1 . . . .  , A n with a finite error < 8  and 
therefore establishes that the states could be any ~, such that 

I ~ ( a D - f , I  <8 ,  i = 1 , 2  . . . . .  n 

If r is a vector state in a representation %, then there will be a vector xI, in 
the vacuum space ~ u  such that 

I p ( A ; ) -  <~l~r~(A,)l~ > I <8  for i----1 . . . .  , n  

It is not possible to distinguish the sets ~q  and ~C a by making only a finite 
number observations. 

In the theory we may put M =  0, the theory survives and shows that a 
hand-inserted mass (m0) is compatible with the existence of a Goldstone 
boson. Since the Goldstone boson invoked in the model does not increase 
the degree(s) of freedom of any of the fields present in the theory (m0q:0), 
there is no reason to demand a gauge-fixing condition of the form X = 0 to 
do away with the Goldstone particle. Moreover, it is known to us that a 
massive vector field may be made to separate via a Stiickelberg decomposi- 
tion into a theory containing the transverse field and the accompanying 
longitudinal part. It is possible to recognize this longitudinal mode as a 
part of some scalar field (in the zero-mass limit this longitudinal mode 
decouples from the theory and may be treated as a Goldstone boson). 
Actually, introducing its partner (real) scalar field the theory may be 
shown to evolve into a gauge-invariant configuration with a charged 
matter field and one is then led to the question whether every massive 
vector field corresponds to some spontaneous symmetry breaking. We also 
note that if the Higgs meson mass /~=0, the theory does not support 
spontaneous symmetry breaking. In fact, then, in (2.7), pl---p2=0. The 
question therefore raised is: should the X be regarded as a function of the 
particle masses present in the theory? We propose to address it as a class of 
Brans-Dicke scalars of the scalar tensor theory of gravitation. A Brans-  
Dicke scalar ff is coupled to the trace T~ ~ of the matter field through the 
relation I-']~=8~r)~T~ v, where ~ is the coupling constant. In the present 
model this relation is invoked through the simultaneous validity of I-IX--0 
and F~ =/z 0, where the X is in the limit of zero momentum. 
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